
MATHEMATICS OF COMPUTATION, VOLUME 29, NUMBER 132 

OCTOBER 1975, PAGES 1105-1108 

On Existence Criteria and Approximation Procedures 
for Integral Equations of the First Kind 

By C. W. Groetsch 

Abstract. The existence of solutions of Fredholm integral equations of the first kind 

is characterized in terms of the convergence properties of a general approximation pro- 

cedure based on a spectral analysis of the integral operator. Applications are given to 

some iterative and regularization methods. In particular, some results of Diaz and Met- 

calf are generalized. 

1. Introduction. Diaz and Metcalf [1] have shown that Picard's necessary and 

sufficient condition for the existence of a solution of a Fredholm integral equation of 

the first kind 

bK (s, t)x(t) ds = y(t) 

is equivalent to the convergence of the infinite series generated by Fridman's iteration 

[3] with initial approximation ,uy, where ,u is a suitable scalar. It is the purpose of 

this note to show that stronger results can be obtained for more general approximation 

procedures. The proofs of the general theorems seem to be no more difficult than the 

special proofs given by Diaz and Metcalf. 

2. Theorems. As in [1] we shall phrase our results abstractly and consider the 

equation 

(2.1) Ax = y 

where A is a compact linear operator on a real Hilbert space H which we will at least 

initially assume to be selfadjoint and positive semidefinite. It is then well known that 

A has a countable set of eigenvalues X1 > X2 > * * * > 0 (X1 > 0) and a corresponding 

set of orthonormal eigenvectors u1, U2 .. In order to have a uniform summation 

convention, we shall assume that Xk > 0 for k = 1, 2, ... (in the contrary case we need 

only replace the infinite sums below with finite sums). Each element x of H then has a 

unique representation of the form 

X = XN + E CkUk 
k =1 

where xNG EN(A) = {z E H: Az = 0} and Sk 41c2 < oo. 

We will make use of the following lemma which is a straightforward modification 

of [1, Lemma 2]. 
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LEMMA. Suppose {at, k: t E D}_ 1 is a sequence of real nets with 2? la2 k 

F < oo for each t E D and limtak =a for each k where 2?a= la< oo. If x = 

k=0 at, Uk, then limtxt = * 1 a*u*. 
The reader who is unfamiliar with the terminology of nets may without essential 

loss of understanding consider D to be either the set of positive integers (which is the 
case considered in [1, Lemma 2]) or the set of positive real numbers. In the applica- 
tions given below, these are the only directed sets D which are used. The limit limt is 
to be interpreted as limt_>OO in either case. 

Since {at, k}k= is square summable for each t E D, the vector xt defined in the 
Lemma above exists for each t E D. The proof of the Lemma now proceeds by con- 
sidering xt - x where 

00 

X= ? akuk 
k=1 

and showing that {xt - x} converges to zero in essentially the same way that {xn} of 
[1, Lemma 2] is shown to converge strongly to zero. 

We will consider approximation procedures of the following form. Let {?t: t C D} 
be a net of continuous real-valued functions defined on some interval containing [0, X1 ] 
such that {fXt(X)} is uniformly bounded and limtbt(Xk) = Xk- 1 for each k. If Ot(A) is 
the operator associated with Ot by the way of the spectral theorem for selfadjoint oper- 
ators [4, p. 3511, then 0b(A)y is an approximation to a solution of (2.1) if such a so- 
lution exists. 

THEOREM 1. If x is a solution of (2.1), then y i N(A) and lim 0,(A)y = x -XN. 

Proof. That y i N(A) follows since the range of A is contained in N(A)' [4, p. 
250]. If Ax = y and x = xN + 1 C*u, then 

00 00 

O(A)y = OI(A)AX = C ck*t(A)Xkuk = E 
k=1 k=1 

Since {Xob(X)} is uniformly bounded on [0, X1], we may apply the Lemma with atk = 

ckXk*t(Ck) and ak = ck to obtain 

00 

lim t(A)y= E ckuk = x - XN. 
t k=1 

A formally stronger converse holds. 
THEOREM 2. If y i N(A) and {fb(A)y} has a weak limit point x, then Ax = y, 

XN = 0 and x = lim,0,(A)y. 
Proof. Suppose that x is the weak limit of a subnet {?bf(A)y}. Then AO,,(A)y 

converges strongly to Ax since A is compact [4, p. 287]. Since y i N(A), there is a 
square-summable sequence {dk } such that y = 2* ld*u*, hence 

AO t(A)y - y = E (1 - XkOt?k))dkuk. 
k=1 

An application of the Lemma with at,k = (1 - XkOt{(Ak))dk shows that this net con- 
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verges strongly to 0 and therefore Ax = y. Also, by Theorem 1, lim,q5(A)y = x -XN. 

Since fO,,(A)y} converges weakly to x, it follows that XN = 0 and lim,q5(A)y = x, 
completing the proof. 

Since bounded sets in Hilbert space are weakly compact [4, p. 229], the above 
results show that the approximations are somewhat unequivocal; they either converge 
or are unbounded. In the case in which A is only assumed to be compact we may 
prove analogous theorems as in [1] by considering instead of (2.1) the equation A*Ax 
= A*y where A* is the adjoint of A. 

3. Applications. We now give some applications by making choices for the net 

{ft}. Below p will denote a scalar such that 0 < p < 2/X1. 
One way to approximate '- 1 is by viewing it as a fixed point of the contractive 

function f(x) = (1 - IiX)x + ,u and using the successive approximations 

(J)o'X) = A,t)n + 1 (O) = (1- pAX)()n (C) + A. 

The sequence {(n} then satisfies the requirements of the previous section. If xn = 

On(A)y, then {xn} is the sequence generated by Fridman's iteration [3] with xo = ,uy 
and the theorems give a generalization of [1, Theorem a, I. 

We now give three other examples of nets which may be used in the theorems 
above. If q5(-Q) = ,u and 

OnNX = - n + 1[( - pAX)(tn On + Al - n 
On - n2 (0 2n +In-+I 

then setting en(X) = O,n(X) - X-', it can be shown that 

enO = + I UnO l uAX), 

where Un(t) is a Chebyshev polynomial of the second kind (see [2, p. 521]). It fol- 
lows that {fOn} possesses the properties required above. The resulting iterative method 
given by xo = 4uy and 

2n n- I 
Xn n + [xn,1 -pAxn-1 + ?y] - + ? 

is D. K. Faddeev's universal algorithm with Chebyshev polynomials of the second kind 
(originally given for matrix equations). 

The reciprocal of X may also be regarded as the root of the function f(x) = 

x - X. Newton's method applied to this function yields a convergent sequence 
given by Q(X) =, On + 1 (X) = (2 - (W) On(X) 

The results of the previous section are then applicable to the sequence xn = Any 
where AO=g1, An+ 1 = 2An-AnAAn. 

As a final example we may consider the functions 0t(X) = (X + t)- 1 (t > 0). 
The resulting approximation procedure given by xt = (A + tI)- ly is a Tihonov-type 
"regularization of order zero" (see [5, p. 1625]). 

The author wishes to thank Dr. Bill Perry for providing him with a translation 
of [3]. 
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